

Bevel Gear Production Software

For Use With 5-Axis Machines For Low-Cost, Efficient, and Flexible, Production As Part of Industrial Revolution 4.0

© Dontyne Systems Limited 2018

Ianufacturers

Dontyne Systems Limited is a company registered in England and Wales with company number 05973058. Registered office: Rotterdam House, 116 Quayside, Newcastle Upon Tyne , ENGLAND, NE1 3DY. VAT Registration Number: 902 9027 45

June 2018

Presentation Contents

- Overview the DS Bevel software
- Current Software preview
 - Gear Design Pro Bevel
 - Load Analysis Model Bevel
 - Machine Centre (Manufacturing Simulation 5 Axis / G-Code)
 - Inspection Centre
 - Optimal Calculation
- Development of a Heat Treatment Model

Dontyne Systems

Overview of Dontyne Systems Bevel Software

- The Gear Design Pro has ISO/AGMA calc for sizing while Generic bevel gear design option produces the complex gear tooth surface data including micro-geometry
- The Load Analysis Model shows contact region of the gear pair under no load and transmission error under load
- The Machine Centre can design tooling and calculate machine path G-code for 5-axis as well as hobbing, grinding, shaping, shaving and even
- Measured data can be evaluated by Inspection Centre module
- Measured data can be used for tool optimisation by Optimal calculation

Gear Design Pro -ISO/AGMA Design and Rating Types Milled, Hobbed, Gleason, Klingelnberg, and Oerlikon can be sized and rated

😨 Dontyne Systems - AGMA / ISO 23509 Bevel Gear Geometry			
<u>G</u> earset <u>R</u> ating R <u>e</u> port <u>P</u> rint			
ISO 23509 Input Method Method 0 (Spiral bevel) Miling 💌			
Shaft Angle 90.000		Sontyne Systems - AGMA / ISO 23509 Bevel Gear Sizing	
Hypoid Offset C Above @ Below -0.000		Pinion Size Teeth Face Width Spiral and Pressure Angle Tooth Depth Tooth Thickness	Depthwise Taper
Number of Teeth 17 34		Depthwise Taper Standard 💌	
Wheel Mean Pitch Diameter		Addendum Angle of Wheel 1.662	Allowing windthe
Wheel Outer Pitch Diameter 💌 195.896		Dedendum Angle of Wheel 3.434	Standard Taper
Wheel Face Width 29.384		Sum of Dedendum Angles 5 097	
Mean Spiral Angle CActual B 47.400 L		Cutter Radius (max) 94.817	
Cutter Radius >> 90.733 76.774 to 94.817		Cutter Radius (min) 76.774	All with the
Number of Blade Groups		Cutter Radius (standard inch) 3.5" 88.9 mm 🔻 88.900 mm	Uniform Taper
Cutter Tip Radius 1.000 1.000			
Additional Data for Dimensions Data Type II		Re-calculate	Advanta wind the
Nominal Design Pressure Angle (Drive) 20.000			
Nominal Design Pressure Angle (Coast) 20.000			Constant and Woodfled Slot Width
Influence Factor of Limit Pressure Angle 1.000			
Mean Addendum Factor >> 0.283			A THE THE AND A
Depth Factor >> 2.000			Withurthon up-
Thickness Factor >> 0.059			V
Clearance Factor 0.125			Root Line tilt
Outer Normal Backlash			
Addendum Angle of Wheel >> 1.662			Parante 1
Dedendum Angle of Wheel 3.434	Calculate · + OK		V
		<< Back Finish >> Cancel	

Types of Gear That Can be Exported

Straight bevel

Spiral Bevel

Zerol Bevel

Types of Gear That Can be Exported

90 degree shaft angle or other

Gear Design Pro

Design tooth can be cropped (a,b,c,d) or extended at toe or heel in Gear Production Suite pair editor reducing potential for error after reworking in export to CAD

Gear Design Pro

Ğ.	Generic Spiral Bevel Gear Geometry			
PINION WHEEL Name Item_6 Shaft Angle deg.min.sec. 90.000 Number of Teeth 21 21 Module (mean normal) 3.444 Pitch Diameter (mean) 72.333 72.333 72.333 Face Width 22.225 Pressure Angle 20.000 Spiral Angle (mean) Equi-ang (log) B 0.000 L Radius for Spiral 45.000 45.000 Face Angle 48.853 Root Angle 40.550 40.550 40.550 Circ. Thickness (mean norm) Est. 5.411 5.411	Shaft Angle Number of Teeth Outer Transverse module Outer Pitch Diameter Nom. Press. Ang. Mean Spiral Angle Face width Pitch Angle Face Angle Root Angle Outer Dedendum Outer Dedendum Outer Whole Depth Outer Trans Circ Thickness Outer Pitch Cone Distance Mean Pitch Dia Mean Pitch Dia Mean Addendum Mean Whole Depth Mean Trans Circ Thickness Normal Chordal Thickness Normal Chordal Thickness Mean Chordal Addendum Addendum Modification Coeff. Inner Addendum	h_ai 2.696 h_fi 3.119 h_1 5.815		
Backlash (mean normal) Outer Addendum A 193 Outer Dadendum A 849 A	Root Fillet Coeff. (rho	R_1 40.035 of/m_mn)(Toe) ▼ (Max) of/m_mn)(heel) ▼ (Max) €	0.482 0.482	

Gleason Strength Factors included in report - Flexible root design for optimum root strength – constant or variable from toe to heel

Gear Design Pro - Generic

Gear Design Pro - Generic

Calculate mirco-geometry values from definition of required marking

Gleason form from setting sheet

Generic Spiral Bevel Gear Geometry	- 0	×
PINION WHEEL		- lal
12_23_5prat_Bevel_304575_6	PINION 9	
Shah Angle 🔽 deg min sec.	Number of Generic Spiral Bevel Gear Geometry	
Number of Teeth	Outer Pitci	
DP (nean normal)	Mean spira race width Pinion Wiheel	
PitchDianeter (maar)	Face Angle WHEEL NEUTRAL MACHINE SETTINGS INNER	OUTER
Face Width (design)	Outer Adder Outer Deder Markine Root Ander	-
Pressure Angle	Outer Trans	-
SpielAngle(mean) Cacular	Outer Pitci Tanga	
Barke for Strini	Mean Pitch	
	Mean Addend Offset Hypoid	_
Pitch Ange	Mean whole Radial Setting	1
Face Angle	Mean Trans Crade Angle	
Root Angle	Addendum No Culter Phase Angle	- I
Circ. Thickness (mean nom)	Inner Adder Siding Base	
	Inner Pitci Head Setting	
Backlash (nean normal)	Ratio of Roll	
Mean Addendum	Cutter Edge Radkis	
Mean Dedendum 💌	Cutter Point Radius	
Root Fillet Coeft. (hol/m_mn)[Toe) •	Blade Angle	
Root Filet Coeff (shol/m_mitheel) *	Helical Motion in 20 deg.	
	Modified Roll Motion Polynomial Coeff "2	
C Show Shendth Factors R Use English Units	Modified Roll Motion Polynomial Coeff "3	
Version 5.4 build 73 FH @ Dontyne Systems 2017	Length units ind Winds Text Roll	

To enter Gleason Settings Face Milled licence option is required and Circular option with sprial angle entered

		Export Settings	Import Setting
Neutral Settings	•	Copy Inner to Outer	Reset Al

IMPORTANT!

1. The software does not calculate settings required to achieve a design, but calculates tooth form based on parameters entered

2. The nominal values are often changed from those the issued documents by production to achive specific customer contact condiitons

Determine changes due to changes in design or machine settings

- No-Loaded and Loaded tooth contact analysis
- Transmission error calculations
- Alternative root fillet shapes other than circular
- Consideration of tooling
- Direct links measurement data

3D Bevel Gear Surface

Export View Load Analysis Option
x
Transmission Error
Load 1 👻 Add Del
Torque (pin) 50 Nm
Mesh Stiff. 14 N/mm/um
Shaft Errors(um) Pin Wheel
Axial Shift 0
Drop 0
Shaft Angle 0 mrad

Load Analysis (Standard) can model deflections in 4 axes at several different load cases Micro-geometry (small changes to the theoretical surfaces) are designed to avoid tooth edge contact or noise and vibration otherwise due to deflection under load

Contact Stress

Transmission Error

Bending Stress can be analyzed in normal plane through toe, middle, or heel (straight bevel only)

Gear Design Pro - Data Export

DXF 3D line grid

ASCII X,Y,Z N

IGES Bspline surface

G-Code (Mazak, Okuma, Makino, etc)

Inspection Systems CMM (Carl Zeiss, Mitutoyo, IMS, Renishaw, etc)

Gear Checker (Osaka Seimitsu, Klinglenberg)

Die tool for forging - Tool Definitions can be derived from gear

Choose process available for gear type and create tool

🗱 Component Editor	Component Editor
Name Pinion Tooth Form Surface Inspection Manufacture Data Sets Machine Process Multi-Axis + + + + + + + + + + + + + + + + + + +	Name Pinion Tooth Form Surface Inspection Manufacture Data Sets Machine Process Forge + Image: Show Tool Die_1 Image: Dispection Image: Dispection
	Radial shrink 0 %
	Z axis shrink
	Pattern local shift 0 %
	Spread adjustment 0 %
	Use heat distortion model

Choose process available for gear type and create tool

Component Editor	Select 'Manufacture' Tab To Access Process Options	Component Editor	
Name Prinon Tooth Form Surface I Machine Process I Show Tool (No Tool Defined)	Anspection Manufacture Data Sets Multi-Axis Forge Pressing '+' Creates a Dec Tool Based on Gear Geor	Name Pinion Tooth Form Surface Machine Process Show Tool Die_1	Inspection Manufacture Data Sets
r 🏳 Disk geometry ——	Tool Design Option Tool Type Are s	s for Given Shown Use heat distortion	0 % 0 % 0 %

Die tool for forging - tool definitions can be derived from gear

	Component Editor		? 🛛
actors applied to gear form to define die which can also ompensate for heat shrinkage	Name Pinion Tooth Form Surface Inspection Manufacture Data Sets Tool Type Forge + Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool Image: Show Tool		
		View Sections C × Section C × Section G × Section G × Section	<u>20 곳</u> 21 옷 11 옷
	Machine Centre	Previous Next 0 🚖	OK Cancel

С

Tool can be exported from different formats

Virtual 5-Axis simulation defines various machines, tools, and cutting options

Simulation of 5-Axis process to cut tooth using end mill, fast flexible production of prototypes and small batch

Export G-Code to file

Machine Centre

Dontyne Systems Revel Gear CNC Output

Songhe systems berer dear erre dapat		
Gear To Be Machined (Pinion)	Rotary Axis Designation Letter	
Process	CA CB @C	
C Rough Flanks Only C Finish Flanks Only	CutterTilt Axis Designation Letter	·
C Rough Root Only C Finish Root Only	• A CB CC	
C Rough Flanks And Root 📀 Finish Flanks and Root	Rotary Table Axis Rotation CW CCW	
Tool Data	Cutter Head Axis-A Rotation	Part Datum
End Mill Diameter 2.500		(Pitch Colle Apex) (0,0,0)
End Mill Corner Radius 🔽 Ball Mill 0.500	C X-Zero • Z-Zero	
End Mill Cutting Length 0.000	Rotary Table Axis Datum	Rot Y
Cutting Details	Fixed C Rot. with Table	
Profile Sample Spacing Factor 2.000	Tooth Position © 0 deg. © 180 deg.	x
15 Cuts/Flank	Rotary Table Angle Definition	Swap X Axis
6 Cuts/Fillet 🔽 🔽 Floor 🔽 Fillet 🔽 Join 🔽 Join Using Side	+180 to -180	
20 Width Positions 💌	C 0 to 360 (M115 M116)	
Tool Length Advance (finish flank only) 🔽 Fact. 0.000		OX OY OZ
Approach and Recess Width 3.121		OX OY OZ
Stock Allowance 0.050	Linear 5.dp 💌 Angle 5.dp 💌	
Spindle Speed (rpm) 12000.000	J 4 Axis (Mount Angle)	
Feed Speed for Cutting (mm/min) 180.000	Restore Default Co-ordinate Setup	
Feed Speed for Rapid Motion (mm/min) 25400.000	Mean Cone Distance	51.147
Sate Height 0.000	Z Mean Point to Pitch Cone Z Pitch Cone from Datum	36.166
Pitch Cone Apex From Datum 0.000	Z mean Point from Datum	-36.166
Milling Type © Climb C Conventional C Both		
Tool ang adj 0.00		
Export G-Code Preview Cutting English Units	All length units in mm unless stated otherwise	© Dontyne Systems Ltd 2017

X

Machine Centre

G-Code Calculation can be exported to *.EIA file

Machine Centre

😨 Generic Spiral Bevel Gear Geometry				-	×
X					
Price MARCHAR SETTINGS MARCHAR DUTER Marchar Rue Angle	Shaft Angle STGMA Number of Teeth 2 Outer Transverse module m_et2 Outer Transverse module default Wan, fyssi, Angle default Face Width construction of the stand Face Width construction of the stand Cutter Addius r_cos Root Angle default Outer Profile default Outer Office Cone Distance R_e Mean Normal Module m_un Mean Mole Depth h_m Mean Mole Depth h_m Mean Cone Distance R_m Mean Mole default Mean Normal Addendum h_m Mean Mole Gret Thickness S_m Mean Trans Circ Thickness S_m Mean Trans Circ Thickness S_m Mean Miner Default h_m Mean Mole Depth h_m Addendum Modification Coeff. X_m Inner Wole Opth h_1 Inner Wole Opth h_1 Inner Mole Opth h_1	PINION 21 38.048 4.193 20.000 22.225 4.0530 3.985 4.0530 3.985 5.084 5.081 5.081 5.081 5.081 5.081 5.084 5.083 5.275 0.0001 2.272 4.40,355 5.084	WHEEL 21 88.048 22.225 4.000 40.550 3.985 4.107 6.560 62.260 72.333 51.147 3.337 6.6473 5.413 5.4147 3.3376 6.473 5.481 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.483 5.485 5.483 5.485 5.483 5.485		
	Length units mm unless stated otherwise		The second se		

Face Milled option calculates tool form and G-code for production on 5-axis for medium and large batch sizes

Export Target Data / Import Measurement File

<u>888</u>			
File View Window Settings	; Help		
		Component Britor	
		Name Philon	
NewProject_1.GPSB		Tooth Form Surface Inspection Manufacture Data Sets	
E-Connectors		Tolerances Settings	
Bearing		Geometry Imits (min/max) Tooth thickness 0.000 0.000 mm	
···· Shaft		Tip diameter 0.000 mm	
Spline		Root diameter 0.000 mm	
🖻 Gear Design Pro		Root rounding 0.000 mm	
🚊 Bevel Pair		Tip rounding 0.000 0.000 mm	
⊡ Item_1		Tolerance format	
···· Pinion		Plus / Minus C Absolute	
····· Wheel	View Data	Tolerance chat type	Zoom In
···· Pin Rack	Export		Zoom Out
···· Planetary	Export		Select Rectangle
···· Spur/Helical Pair	Delete		Measure
Worm Gear Pair	Edit		Fit Window
Gearbox Designer			Print
Concepts	Сору		Export
····· Models	Show Sub-Systems		
		Vew	
	Import Measurements	C X Auis]	20 🚖
		C Y Ads	21 🌻
		Insepecton Centre	0 🗍

Inspection tab on single component window can be used to select inspection range even on cropped teeth and adjust reference plane with inspection machine datum

Measured data can be imported and evaluations of profile, flank line, pitch, thickness and run-out to ISO and AGMA

Tooth Surface Measurements

Data can be imported and used for:

Statistical analysis of several teeth Creating master tooth form Tooth contact analysis Tool and process correction

Import and evaluate tooth measurement data for a component or tool

Create Average from Multiple Measurements

Import and evaluate tooth measurement data for a component or tool

Different formats for surface display

Heat Map

New Heat-Map format showing areas of correct form to given tolerance (green) marginal (yellow) and error (red)

Import and evaluate tooth measurement data for a component or tool

Current Profile/Flank selection indicated in blue

Different formats for surface display

22.09

23.0

21.0

-10.1

Import and evaluate tooth measurement data for a component or tool

Create Target Surface For Future Production

Inspection Centre Create Master Or Optimised Surface

Tooth measurement data can be used to simulate a marking pattern

Simulation of marking pattern using measurement data on one or both components

Optimal - Tool Optimisation Using Measured Data

© Dontyne Systems Limited 2018

Future Development

- Full 3D FE of tooth form
- Efficiency in Load Model
- Database for heat distortion

Deformation Model For Heat Treatment Compensation

- Appropriate for pre-finished form and for die production in forging and injection moulding
- Factors such as design parameters, material, force, and temperature will form model
- Requires contribution from customer to develop initial model based on experience
- Model will be compared to existing data for validation (propose correct 50% as initial target)
- Considerable savings in time if avoidance of iteration to tool surface

Thank You